skip to navigation skip to content
Providers & themes
Find theme:
Select provider / theme

All Social Sciences Research Methods Programme courses

Show:
Show only:

Showing courses 26-50 of 51
Courses per page: 10 | 25 | 50 | 100

Issues in Measurement: Validity and Reliability Mon 3 Feb 2020   14:00 [Places]

This short two-hour course will provide an introduction to measurement issues in the social sciences. We design questions (or "survey instruments") to gain information on the concepts we are researching. Two prime considerations in whether an instrument is effective are validity (does our instrument actually measure what we want it to measure?) and reliability (does our instrument give consistent results across a range of different situations?) Considerations of validity and reliability are important across many areas of social science, including the measurement of personality and mental health; attitudes; ability tests; substance use disorders; and cultural differences and similarities between various groups. The course will discuss the importance, concepts, and types of validity and reliability. We will also briefly look at some statistical techniques for validity and reliability checks: Cronbach’s Alpha, Kappa coefficient, and Factor Analysis.

Merging and Linking Data Sets Mon 2 Dec 2019   16:00 [Places]

Merging and linking data sets are a process that researchers often encounter. In most cohort studies and longitudinal data sets, data on the same respondents who were interviewed at various times may be stored in different files. Or, data on different respondents but were interviewed at the same time, such as mothers and their children, may also be stored in various files. In either case, we may want to merge/link the files together before performing further analyses. This course will discuss two different ways of combining data files: merge (one-to-one merging and one-to-many merging) and append, and will demonstrate how to use ‘merge’ and ‘append’ commands in Stata.

Meta Analysis Mon 9 Mar 2020   09:00 [Places]

In this module students will be introduced to meta-analysis, a powerful statistical technique allowing researchers to synthesize the available evidence for a given research question using standardized (comparable) effect sizes across studies. The sessions teach students how to compute treatment effects, how to compute effect sizes based on correlational studies, how to address questions such as what is the association of bullying victimization with depression? The module will be useful for students who seek to draw statistical conclusions in a standardized manner from literature reviews they are conducting.

Microsoft Access: Database Design and Use Tue 26 Nov 2019   14:00 [Places]

These two sessions will provide a basic introduction to the management and analysis of relational databases, using Microsoft Access and a set of historical datasets. The workshops will introduce participants to the following:

  • The use of Access’s menus and tool bars
  • Viewing and browsing data tables
  • Creating quick forms formulating queries
  • Developing queries using Boolean operators
  • Performing simple statistical operations
  • Linking tables and working with linked tables
  • Querying multiple tables
  • Data transformation.
Mixed Methods Wed 17 Oct 2018   14:00 Finished

Neither quantitative nor qualitative data analysis has all the answers in social science research: qualitative research has depth and nuance but is not generalisable beyond the sample on which it is based, while quantitative research is generalisable but may lack depth.

A mixed methods approach, which uses evidence from both qualitative and quantitative approaches to shed light on a single research question, has the potential to gain the advantages of both approaches. However, genuine mixed methods work is not always easy. This short course will introduce students to the rationale behind the use of mixed methods approaches, and how to design mixed methods projects for best results.

Multilevel Modelling Wed 11 Mar 2020   09:30 [Places]

In this module, students will be introduced to multilevel modelling, also known as hierarchical linear modelling. MLM allows the user to analyse how outcomes are influenced by factors acting at multiple levels. So, for example, we might conceptualise children's educational process as being influenced by individual or family-level factors, as well as by factors operating at the level of the school or the neighbourhood. Similarly, outcomes for prisoners might be influenced by individual and/or family-level characteristics, as well as by the characteristics of the prison in which they are detained.

  • Introduction to Stata/MLM theory
  • Applications I - Random intercept models
  • Applications II - Random slope models
  • Applications III - Revision session/growth models
NVivo Mon 19 Nov 2018   14:00 Finished

These two sessions will provide a basic introduction to the management and analysis of qualitative data using NVivo 12 for Windows*. The sessions will introduce participants to the following:

  • consideration of the advantages and limitations of using qualitative analysis software such as NVivo 12
  • setting-up a research project in NVivo
  • the use of NVivo’s menus and tool bars
  • importing and organising data
  • starting data analysis using NVivo’s coding tools
  • exploring data using query and visualization tools

Please note: NVivo for Mac will not be covered.

Panel Data Analysis (Intensive) Wed 26 Feb 2020   09:00 [Places]

This module provides an applied introduction to panel data analysis (PDA). Panel data are gathered by taking repeated observations from a series of research units (eg. individuals, firms) as they move through time. This course focuses primarily on panel data with a large number of research units tracked for a relatively small number of time points.

The module begins by introducing key concepts, benefits and pitfalls of PDA. Students are then taught how to manipulate and describe panel data in Stata. The latter part of the module introduces random and fixed effects panel models for continuous and dichotomous outcomes. The course is taught through a mixture of lectures and practical sessions designed to give students hands-on experience of working with real-world data from the British Household Panel Survey.

  • Introduction to PDA: Concepts and uses
  • Manipulating and describing panel data
  • An overview of random effects, fixed effects and ‘hybrid’ panel models
  • Panel models for dichotomous outcomes

This course will introduce students to the general philosophical debates concerning scientific methodology, assessing their ramifications for the conduct of qualitative social research. It will enable students to critically evaluate major programmes in the philosophy of sciences, considering whether there are important analytic differences between the social and natural sciences; and whether qualitative methods themselves comprise a unified approach to the study of social reality.

Power Analysis Mon 11 Feb 2019   14:00 Finished

This two-hour short course will introduce students to the concept of power analysis (also known as power calculations), type I and II errors, and how to do power analysis for T test, correlation and analysis of variance. Students should not expect to learn complex power analysis for structural equation modeling, multilevel modeling (the SSRMC offers individual courses on both) in this introductory course (Stata currently does not have commands for these analyses). This course aims to provide an easy and intuitive rationale behind the technique, as well as hands-on practice in how to perform power analysis in Stata.

Power analysis is an important skill for anyone doing statistical research; it is particularly useful when writing a grant proposal, and is sometimes required by funders. It involves calculating the number of observations required to undertake a given statistical analysis. If a sample is too small, significant associations may not be detectable, even though they may be present in the population from which the sample is drawn. Power analysis is useful when:

  • You plan to collect data for research, and want to calculate how many subjects are needed
  • You need to plan how much time and/or money to allow for a research project
  • Your face budget constraints in your research, and need to establish whether the research is feasible
  • You are writing a grant proposal which asks for a power calculation
Practical introduction to MATLAB Programming Thu 10 Oct 2019   10:00 Finished

This module is shared with Psychology. Students from the Department of Psychology MUST book places on this course via the Department; any bookings made by Psychology students via the SSRMP portal will be cancelled.

The course focuses on practical hands-on variable handling and programming implementation using rather than on theory. This course is intended for those who have never programmed before, including those who only call/run Matlab scripts but are not familiar with how code works and how matrices are handled in Matlab. (Note that calling a couple of scripts is not 'real' programming.)

MATLAB (C) is a powerful scientific programming environment optimal for data analysis and engineering solutions. More information on the programme and its uses can be found here

More information on the course can be found here

Propensity Score Matching Wed 19 Feb 2020   09:00 [Places]

Propensity score matching (PSM) is a technique that simulates an experimental study in an observational data set in order to estimate a causal effect. In an experimental study, subjects are randomly allocated to “treatment” and “control” groups; if the randomisation is done correctly, there should be no differences in the background characteristics of the treated and non-treated groups, so any differences in the outcome between the two groups may be attributed to a causal effect of the treatment. An observational survey, by contrast, will contain some people who have been subject to the “treatment” and some people who have not, but they will not have not been randomly allocated to those groups. The characteristics of people in the treatment and control groups may differ, so differences in the outcome cannot be attributed to the treatment. PSM attempts to mimic the experimental situation trial by creating two groups from the sample, whose background characteristics are virtually identical. People in the treatment group are “matched” with similar people in the control group. The difference between the treatment and control groups in this case should may therefore more plausibly be attributed to the treatment itself. PSM is widely applied in many disciplines, including sociology, criminology, economics, politics, and epidemiology. The module covers the basic theory of PSM, the steps in the implementation (e.g. variable choice for matching and types of matching algorithms), and assessment of matching quality. We will also work through practical exercises using Stata, in which students will learn how to apply the technique to the analysis of real data and how to interpret the results.

Psychometrics Tue 15 Oct 2019   14:00 In progress

An introduction to the design, validation and implementation of tests and questionnaires in social science research, using both Classical Test Theory (CTT) and modern psychometric methods such as Item Response Theory (IRT). This course aims to enable students to: be able to construct and validate a test or questionnaire; understand the strengths, weaknesses and limitations of existing tests and questionnaires; appreciate the impact and potential of modern psychometric methods in the internet age.

Week 1: Introduction to psychometrics
a. Psychometrics, ancient and modern. Classical Test Theory
b. How to design and build your own psychometric test

Week 2: Testing in the online environment
a. Testing via the internet. How to, plus do’s and don’ts
b. Putting your test online

Week 3: Modern Psychometrics
a. Item Response Theory (IRT) models and their assumptions
b. Advanced assessment using computer adaptive testing

Week 4: Implementing adaptive tests online
a. How to automatically generate ability items
b. Practical

Public Policy Analysis Mon 24 Feb 2020   14:00 [Places]

The analysis of policy depends on many disciplines and techniques and so is difficult for many researchers to access. This module provides a mixed perspective on policy analysis, taking both an academic and a practitioner perspective. This is because the same tools and techniques can be used in academic research on policy options and change as those used in practice in a policy environment. This course is provided as three 2 hour sessions delivered as a mix of lectures and seminars. No direct analysis work will be done in the sessions themselves, but some sample data and questions will be provided for students who wish to take the material into practice.

Qualitative Interviews with Vulnerable Groups new Tue 11 Feb 2020   09:30 [Places]

Qualitative Interviews with Vulnerable Groups

Qualitative interviews are often used in the social sciences to learn more about the world and can be particularly appropriate for people we might class as vulnerable. The course will try to achieve two things. First, it will have a strong practical arc, guiding students through the complete process of designing and delivering interviews and what to do with the data when you have it. It is particularly important, therefore, that students come to the course prepared with a research question in mind (it does not have to be your actual dissertation topic). Second, we will repeatedly think carefully about the challenges of interviewing with populations that are deemed vulnerable (especially prisoners, women in the criminal justice system, and people living with trauma). We will explore how, in all stages of the research cycle, questions of ethics and the importance of understanding ‘whole people’ remain pertinent.

In the first session we will think about how to frame a study and research question, and how to design an interview schedule that allows you to access your question sensibly and creatively! We will also think about the challenges of interviewing those with trauma, in particular, as a case study.

In the second session we will think through the challenges of actually undertaking interviews in the field. Many hints and tip will be shared, and students will be encouraged to undertake a short mock interview.

In the third session we explore various ways in which to approach a mass of interview data and different approaches towards analysis.

In the final session, we burrow down into analysis and talk about how to write up your research.

In both of the final sessions students will be asked to engage with real interview transcripts that have been anonymised.

Reading List

The following list of reading materials provide useful context for the course, but is not mandatory:

Van der Kolk, B. A. (2015). The body keeps the score: Brain, mind, and body in the healing of trauma. Penguin Books.

Levine, P. A. (2010). In an unspoken voice: How the body releases trauma and restores goodness. North Atlantic Books.

Noaks, L. and Wincup, E. (2004) Criminological Research: Understanding qualitative methods, London: Sage Publications. (An excellent overview of qualitative research methods, with useful examples.)

Brinkmann, S. and Kvale, S. (2015) InterViews: Learning the craft of qualitative research interviewing, 3rd ed., Los Angeles: Sage.

Maruna, S. (2001) Making Good: How ex-convicts reform and rebuild their lives, Washington, DC: American Psychological Association.

Becker, H.S. (1998) Tricks of the Trade: How to think about your research while you're doing it, Chicago, IL: University of Chicago Press.

Spradley, J. (1996) The Ethnographic Interview, London: Harcourt Brace Jovanovich. Or see the (1979) edition, New York: Holt, Rinehart & Winston.

Standard statistical techniques in the social sciences are good at uncovering relationships between variables, but less good at establishing whether these relationships are causal. If A and B are correlated, does that mean A "causes" B? That B "causes" A? Or could both A and B be driven by a third factor C?

Randomised controlled trials are a type of study often considered to be the gold standard in uncovering this kind of causality. Many students and early-career researchers avoid RCTs, assuming they are complex and expensive to run. However, that need not be the case. This module will explain the theory of RCTs, how they are implemented, and will encourage participants to think about how they might design an RCT in their own field of work.

Reading and Understanding Statistics Mon 28 Oct 2019   16:00 [Places]

This module is for students who don’t plan to use quantitative methods in their own research, but who need to be able to read and understand published research using quantitative methods. You will learn how to interpret graphs, frequency tables and multivariate regression results, and to ask intelligent questions about sampling, methods and statistical inference. The module is aimed at complete beginners, with no prior knowledge of statistics or quantitative methods.

Research Ethics Mon 21 Oct 2019   15:00   [More dates...] [Places]

Ethics is becoming an increasingly important issue for all researchers and the aim of this session is to demonstrate the practical value of thinking seriously and systematically about what constitutes ethical conduct in social science research. The session will involve a lecture component and some small-group work.

Aims:
To allow students to distinguish between values, moral and ethical issues, encourage students to think about problems and dilemmas in conducting research, help students to gain an overview of ethical relationships, enable students to know when to ask for help, and prepare students in terms of defence of possible criticisms of their own research.

Topics:

  • What do we mean by ethics?
  • National and international policy frameworks
  • Ethics and risk
  • Ethics across disciplinary boundaries
  • Dealing with ethical dilemmas
  • The processes of applying for ethics approval within the University of Cambridge

1 other event...

Date Availability
Mon 20 Jan 2020 15:00 [Places]
Researching Organisations Mon 11 Nov 2019   09:00 [Places]

This course provides an introduction to some of the methodological issues involved in researching organisations. Drawing on examples of studies carried out in a wide range of different types of organisation, the aim will be to explore practical strategies to overcome some of problems that are typically encountered in undertaking such studies.

Secondary Data Analysis Tue 10 Mar 2020   14:00 [Places]

Using secondary data (that is, data collected by someone else, usually a government agency or large research organisation) has a number of advantages in social science research: sample sizes are usually larger than can be achieved by primary data collection, samples are more nearly representative of the populations they are drawn from, and using secondary data for a research project often represents significant savings in time and money. This short course, taught by Dr Deborah Wiltshire of the UK Data Archive, will discuss the advantages and limitations of using secondary data for research in the social sciences, and will introduce students to the wide range of available secondary data sources. The course is based in a computer lab; students will learn how to search online for suitable secondary data by browsing the database of the UK Data Archive.

Social Network Analysis Wed 30 Jan 2019   09:00 Finished

This introductory course is for graduate students who have no prior training in social network analysis (SNA). In the morning, we overview SNA concepts and analyse key articles in the literature. In the afternoon, students learn to handle relational databases and code for SNA research using R.

Link to a key paper in the SNA literature: https://www.jstor.org/stable/2781822?Search=yes&resultItemClick=true&searchText=robust&searchText=action&searchText=padgett&searchUri=%2Faction%2FdoBasicSearch%3FQuery%3Drobust%2Baction%2Bpadgett&refreqid=search%3Ac4254643dc4499f2a9c8608f9e871d96&seq=1#page_scan_tab_contents

Structural Equation Modelling (Intensive) Wed 27 Feb 2019   09:00 Finished

This intensive one-day course on structural equation modelling will provide an introduction to SEM using the statistical software Stata. The aim of the course is to introduce structural equation modelling as an analytical framework and to familiarize participants with the applications of the technique in the social sciences.

The application of the structural equation modelling framework to a variety of social science research questions will be illustrated through examples of published papers. The examples used are drawn from very recent papers, as well as publications from the early days of the technique; some use path analysis using cross-national data, others confirmatory factor analysis, and other still full structural models, to test particular hypotheses. Some example papers may be found below, though they should not be treated as the gold standard, rather as an illustration of the variety of approaches and reporting techniques within SEM.

  • Duff, A., Boyle, E., Dunleavy, K., & Ferguson, J. (2004). The relationship between personality, approach to learning and academic performance. Personality and individual differences, 36(8), 1907-1920.
  • Garnier, M., & Hout, M. (1976). Inequality of educational opportunity in France and the United States. Social Science Research, 5(3), 225-246.
  • Helm, F., Müller-Kalthoff, H., Mukowski, R., & Möller, J. (2018). Teacher judgment accuracy regarding students' self-concepts: Affected by social and dimensional comparisons?. Learning and Instruction, 55, 1-12.
  • Parker, P. D., Jerrim, J., Schoon, I., & Marsh, H. W. (2016). A multination study of socioeconomic inequality in expectations for progression to higher education: The role of between-school tracking and ability stratification. American Educational Research Journal, 53(1), 6-32.

Students will engage in a critique of such examples, with the aim of gaining a better understanding of the SEM framework, as well as its application to real-life data. To further facilitate this application focus, the theoretical introduction will be accompanied by practical examples based on real, publicly-available data.

Survey Research and Design Mon 17 Feb 2020   15:00 [Standby]

The module aims to provide students with an introduction to and overview of survey methods and its uses and limitations. It will introduce students both to some of the main theoretical issues involved in survey research (such as survey sampling, non-response and question wording) and to practicalities of the design and analysis of surveys. The module consists of three three-hour sessions, split between lectures and practical exercises.

At the start of the module, the theoretical aspects of designing surveys will feature more, and topics covered include: the background to and history of survey research (with examples mostly drawn from political polling); an overview of the issues involved in analysing data from surveys conducted by others and some practical advice on how to evaluate such data; issues of sampling, non-response and different ways of doing surveys; issues related to questionnaire design (question wording, answer options, etc.) and ethical considerations. These lectures are relevant for all students taking the module, irrespective of whether they will conduct surveys themselves or are 'passive' users of survey results.

As the module progresses the practical aspects of designing surveys will feature more, particularly issues directly related to questionnaires (and less on issues of sampling), such as the wording of questions, the order of questions, and the use of different answer options. Most of the exercises will be provided by the instructors, but there will also be opportunities for students to bring in examples of surveys they would like to develop for their own research (and participants in the sessions may be asked to answer each other's surveys as a pilot test). We encourage all students registered for the module to attend the more practical sessions, but it will be of most direct relevance to those who are using, or plan to use, surveys in their research.

Time Series Analysis (Intensive) Wed 19 Feb 2020   09:00 [Places]

This module introduces the time series techniques relevant to forecasting in social science research and computer implementation of the methods. Background in basic statistical theory and regression methods is assumed. Topics covered include time series regression, Vector Error Correction and Vector Autoregressive Models, Time-varying Volatility, and ARCH models. The study of applied work is emphasized in this non-specialist module. Topics include:

  • Introduction to Time Series: Time series and cross-sectional data; Components of a time series, Forecasting methods overview; Measuring forecasting accuracy, Choosing a forecasting technique
  • Time Series Regression; Modelling linear and nonlinear trend; Detecting autocorrelation; Modelling seasonal variation by using dummy variables
  • Stationarity; Unit Root test; Cointegration
  • Vector Error Correlation and Vector Autoregressive models; Impulse responses and variance decompositions
  • Time-varying volatility and ARCH models; GARCH models
Weighting and Imputation Mon 24 Feb 2020   13:00 [Places]

In order for the findings of statistical analysis to be generalisable, the sample on which the analysis is based should be representative of the population from which it is drawn. But it is well known that some groups are under-represented in social science surveys: they may be harder to contact in the first place, less likely to agree to participate in the survey, or less likely to answer particular questions even if they do agree to participate.

This short module will introduce students to the techniques used by survey statisticians to overcome these problems. Weighting is used to deal with the problem of certain groups being under-represented in the sample; imputation is used to deal with missing answers to individual questions. Students will learn how and why weighting and imputation work, and will be taken through practical lab-based exercises which will teach them how to work with secondary data containing weights or imputed values.

[Back to top]