skip to navigation skip to content

Social Sciences Research Methods Programme course timetable

Show:

Mon 11 Nov – Fri 22 Nov

Now Today



Monday 11 November

10:00
Basic Quantitative Analysis (BQA 2) (1 of 4) Finished 10:00 - 12:00 Department of Genetics, Biffen Lecture, Downing Site

This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data.

Techniques to be covered include:

  • Cross-tabulations
  • Scatterplots
  • Covariance and correlation
  • Nonparametric methods
  • Two-sample t-tests
  • ANOVA
  • Ordinary Least Squares (OLS)

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

Basic Quantitative Analysis (BQA-1) (1 of 4) Finished 10:00 - 12:00 Department of Genetics, Biffen Lecture, Downing Site

This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data.

Techniques to be covered include:

  • Cross-tabulations
  • Scatterplots
  • Covariance and correlation
  • Nonparametric methods
  • Two-sample t-tests
  • ANOVA
  • Ordinary Least Squares (OLS)

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

14:00
Diary Methodology (3 of 4) Finished 14:00 - 16:00 8 Mill Lane, Lecture Room 6

This four-part workshop series provides an introduction to using solicited diaries as a research tool. The main goal of the course is to add diary methodology to students’ research toolboxes. It is a flexible and versatile tool that has been used by researchers in many fields, including public health, nursing, psychology, media studies, education, and sociology. The workshop is suitable for anybody interested in learning more about the method and/or using diaries in their research.

The course covers the use of qualitative and quantitative types of diaries, both as a self-standing tool and as a part of mixed-method research designs. The lectures and workshops aim to provide theoretical and practical foundations, as well as first-hand experience with solicited diaries as a research tool. The course also provides unique insights into diary data analysis and its challenges.

The course is equally driven by lectures and student participation/practicums. The initial workshop (Week 1) provides a solid theoretical introduction to the diary methodology, including the history of the method, qualitative and quantitative variants, modes of delivery, and use of technology. The follow-up workshops sequentially advance this knowledge base through practical exercises and discussions (Weeks 2 & 4), as well as a specialist lecture (Week 3) on data management, participant communication, ethics and data analysis.

Basic Quantitative Analysis (BQA-1) (2 of 4) Finished 14:00 - 16:00 University Information Services, Titan Teaching Room 1, New Museums Site

This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data.

Techniques to be covered include:

  • Cross-tabulations
  • Scatterplots
  • Covariance and correlation
  • Nonparametric methods
  • Two-sample t-tests
  • ANOVA
  • Ordinary Least Squares (OLS)

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

Doing Qualitative Interviews (1 of 3) Finished 14:00 - 16:00 8 Mill Lane, Lecture Room 3

Face-to-face interviews are used to collect a wide range of information in the social sciences. They are appropriate for the gathering of information on individual and institutional patterns of behaviour; complex histories or processes; identities and cultural meanings; routines that are not written down; and life-history events. Face-to-face interviews thus comprise an appropriate method to generate information on individual behaviour, the reasons for certain patterns of acting and talking, and the type of connection people have with each other.

The first session provides an overview of interviewing as a social research method, then focuses on the processes of organising and conducting qualitative interviews. The second session explores the ethics and practical constraints of interviews as a research method, particularly relevant when attempting to engage with marginalised or stigmatised communities. The third session focuses on organisation and analysis after interviews, including interpretation through coding and close reading. This session involves practical examples from qualitative analysis software. The final session provides an opportunity for a hands-on session, to which students should bring their interview material (at whatever stage of the process: whether writing interview questions, coding or analysing data) in order to receive advice and support in taking the interview material/data to the next stage of the research process.

Topics:

1. Conducting qualitative interviews

2. Ethics and practical constraints

3. Practical session: interpretation and analysis

NOTE: Strike action is taking place between 25 November and 4 December 2019. If the strike goes ahead, this module will be affected. Please see the 'latest news' section on the home page of the SSRMP website for more information.

16:00
Reading and Understanding Statistics (3 of 4) Finished 16:00 - 18:00 8 Mill Lane, Lecture Room 1

This module is for students who don’t plan to use quantitative methods in their own research, but who need to be able to read and understand published research using quantitative methods. You will learn how to interpret graphs, frequency tables and multivariate regression results, and to ask intelligent questions about sampling, methods and statistical inference. The module is aimed at complete beginners, with no prior knowledge of statistics or quantitative methods.

Basic Quantitative Analysis (BQA 2) (2 of 4) Finished 16:00 - 18:00 University Information Services, Titan Teaching Room 1, New Museums Site

This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data.

Techniques to be covered include:

  • Cross-tabulations
  • Scatterplots
  • Covariance and correlation
  • Nonparametric methods
  • Two-sample t-tests
  • ANOVA
  • Ordinary Least Squares (OLS)

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

Tuesday 12 November

14:00
Introduction to Stata (1 of 2) Finished 14:00 - 18:00 University Information Services, Titan Teaching Room 1, New Museums Site

The course will provide students with an introduction to the popular and powerful statistics package Stata. Stata is commonly used by analysts in both the social and natural sciences, and is the statistics package used most widely by the SSRMP. You will learn:

  • How to open and manage a dataset in Stata
  • How to recode variables
  • How to select a sample for analysis
  • The commands needed to perform simple statistical analyses in Stata
  • Where to find additional resources to help you as you progress with Stata

The course is intended for students who already have a working knowledge of statistics - it's designed primarily as a ""second language"" course for students who are already familiar with another package, perhaps R or SPSS. Students who don't already have a working knowledge of applied statistics should look at courses in our Basic Statistics Stream.

Wednesday 13 November

10:00
Basic Quantitative Analysis (BQA-4) (1 of 4) Finished 10:00 - 12:00 Department of Genetics, Biffen Lecture, Downing Site

This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data.

Techniques to be covered include:

  • Cross-tabulations
  • Scatterplots
  • Covariance and correlation
  • Nonparametric methods
  • Two-sample t-tests
  • ANOVA
  • Ordinary Least Squares (OLS)

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

Basic Quantitative Analysis (BQA-3) (1 of 4) Finished 10:00 - 12:00 Department of Genetics, Biffen Lecture, Downing Site

This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data.

Techniques to be covered include:

  • Cross-tabulations
  • Scatterplots
  • Covariance and correlation
  • Nonparametric methods
  • Two-sample t-tests
  • ANOVA
  • Ordinary Least Squares (OLS)

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

14:00
Basic Quantitative Analysis (BQA-3) (2 of 4) Finished 14:00 - 16:00 University Information Services, Titan Teaching Room 1, New Museums Site

This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data.

Techniques to be covered include:

  • Cross-tabulations
  • Scatterplots
  • Covariance and correlation
  • Nonparametric methods
  • Two-sample t-tests
  • ANOVA
  • Ordinary Least Squares (OLS)

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

16:00
Basic Quantitative Analysis (BQA-4) (2 of 4) Finished 16:00 - 18:00 University Information Services, Titan Teaching Room 1, New Museums Site

This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data.

Techniques to be covered include:

  • Cross-tabulations
  • Scatterplots
  • Covariance and correlation
  • Nonparametric methods
  • Two-sample t-tests
  • ANOVA
  • Ordinary Least Squares (OLS)

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

Monday 18 November

10:00
Basic Quantitative Analysis (BQA 2) (3 of 4) Finished 10:00 - 12:00 Department of Genetics, Biffen Lecture, Downing Site

This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data.

Techniques to be covered include:

  • Cross-tabulations
  • Scatterplots
  • Covariance and correlation
  • Nonparametric methods
  • Two-sample t-tests
  • ANOVA
  • Ordinary Least Squares (OLS)

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

Basic Quantitative Analysis (BQA-1) (3 of 4) Finished 10:00 - 12:00 Department of Genetics, Biffen Lecture, Downing Site

This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data.

Techniques to be covered include:

  • Cross-tabulations
  • Scatterplots
  • Covariance and correlation
  • Nonparametric methods
  • Two-sample t-tests
  • ANOVA
  • Ordinary Least Squares (OLS)

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

14:00
Diary Methodology (4 of 4) Finished 14:00 - 16:00 8 Mill Lane, Lecture Room 6

This four-part workshop series provides an introduction to using solicited diaries as a research tool. The main goal of the course is to add diary methodology to students’ research toolboxes. It is a flexible and versatile tool that has been used by researchers in many fields, including public health, nursing, psychology, media studies, education, and sociology. The workshop is suitable for anybody interested in learning more about the method and/or using diaries in their research.

The course covers the use of qualitative and quantitative types of diaries, both as a self-standing tool and as a part of mixed-method research designs. The lectures and workshops aim to provide theoretical and practical foundations, as well as first-hand experience with solicited diaries as a research tool. The course also provides unique insights into diary data analysis and its challenges.

The course is equally driven by lectures and student participation/practicums. The initial workshop (Week 1) provides a solid theoretical introduction to the diary methodology, including the history of the method, qualitative and quantitative variants, modes of delivery, and use of technology. The follow-up workshops sequentially advance this knowledge base through practical exercises and discussions (Weeks 2 & 4), as well as a specialist lecture (Week 3) on data management, participant communication, ethics and data analysis.

Basic Quantitative Analysis (BQA-1) (4 of 4) Finished 14:00 - 16:00 University Information Services, Titan Teaching Room 1, New Museums Site

This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data.

Techniques to be covered include:

  • Cross-tabulations
  • Scatterplots
  • Covariance and correlation
  • Nonparametric methods
  • Two-sample t-tests
  • ANOVA
  • Ordinary Least Squares (OLS)

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

Doing Qualitative Interviews (2 of 3) Finished 14:00 - 16:00 8 Mill Lane, Lecture Room 3

Face-to-face interviews are used to collect a wide range of information in the social sciences. They are appropriate for the gathering of information on individual and institutional patterns of behaviour; complex histories or processes; identities and cultural meanings; routines that are not written down; and life-history events. Face-to-face interviews thus comprise an appropriate method to generate information on individual behaviour, the reasons for certain patterns of acting and talking, and the type of connection people have with each other.

The first session provides an overview of interviewing as a social research method, then focuses on the processes of organising and conducting qualitative interviews. The second session explores the ethics and practical constraints of interviews as a research method, particularly relevant when attempting to engage with marginalised or stigmatised communities. The third session focuses on organisation and analysis after interviews, including interpretation through coding and close reading. This session involves practical examples from qualitative analysis software. The final session provides an opportunity for a hands-on session, to which students should bring their interview material (at whatever stage of the process: whether writing interview questions, coding or analysing data) in order to receive advice and support in taking the interview material/data to the next stage of the research process.

Topics:

1. Conducting qualitative interviews

2. Ethics and practical constraints

3. Practical session: interpretation and analysis

NOTE: Strike action is taking place between 25 November and 4 December 2019. If the strike goes ahead, this module will be affected. Please see the 'latest news' section on the home page of the SSRMP website for more information.

16:00
Reading and Understanding Statistics (4 of 4) Finished 16:00 - 18:00 8 Mill Lane, Lecture Room 1

This module is for students who don’t plan to use quantitative methods in their own research, but who need to be able to read and understand published research using quantitative methods. You will learn how to interpret graphs, frequency tables and multivariate regression results, and to ask intelligent questions about sampling, methods and statistical inference. The module is aimed at complete beginners, with no prior knowledge of statistics or quantitative methods.

Basic Quantitative Analysis (BQA 2) (4 of 4) Finished 16:00 - 18:00 University Information Services, Titan Teaching Room 1, New Museums Site

This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data.

Techniques to be covered include:

  • Cross-tabulations
  • Scatterplots
  • Covariance and correlation
  • Nonparametric methods
  • Two-sample t-tests
  • ANOVA
  • Ordinary Least Squares (OLS)

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

Tuesday 19 November

14:00
Introduction to Stata (2 of 2) Finished 14:00 - 18:00 University Information Services, Titan Teaching Room 1, New Museums Site

The course will provide students with an introduction to the popular and powerful statistics package Stata. Stata is commonly used by analysts in both the social and natural sciences, and is the statistics package used most widely by the SSRMP. You will learn:

  • How to open and manage a dataset in Stata
  • How to recode variables
  • How to select a sample for analysis
  • The commands needed to perform simple statistical analyses in Stata
  • Where to find additional resources to help you as you progress with Stata

The course is intended for students who already have a working knowledge of statistics - it's designed primarily as a ""second language"" course for students who are already familiar with another package, perhaps R or SPSS. Students who don't already have a working knowledge of applied statistics should look at courses in our Basic Statistics Stream.

Wednesday 20 November

10:00
Basic Quantitative Analysis (BQA-4) (3 of 4) Finished 10:00 - 12:00 Department of Genetics, Biffen Lecture, Downing Site

This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data.

Techniques to be covered include:

  • Cross-tabulations
  • Scatterplots
  • Covariance and correlation
  • Nonparametric methods
  • Two-sample t-tests
  • ANOVA
  • Ordinary Least Squares (OLS)

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

Basic Quantitative Analysis (BQA-3) (3 of 4) Finished 10:00 - 12:00 Department of Genetics, Biffen Lecture, Downing Site

This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data.

Techniques to be covered include:

  • Cross-tabulations
  • Scatterplots
  • Covariance and correlation
  • Nonparametric methods
  • Two-sample t-tests
  • ANOVA
  • Ordinary Least Squares (OLS)

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

14:00
Basic Quantitative Analysis (BQA-3) (4 of 4) Finished 14:00 - 16:00 University Information Services, Titan Teaching Room 1, New Museums Site

This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data.

Techniques to be covered include:

  • Cross-tabulations
  • Scatterplots
  • Covariance and correlation
  • Nonparametric methods
  • Two-sample t-tests
  • ANOVA
  • Ordinary Least Squares (OLS)

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

16:00
Basic Quantitative Analysis (BQA-4) (4 of 4) Finished 16:00 - 18:00 University Information Services, Titan Teaching Room 1, New Museums Site

This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data.

Techniques to be covered include:

  • Cross-tabulations
  • Scatterplots
  • Covariance and correlation
  • Nonparametric methods
  • Two-sample t-tests
  • ANOVA
  • Ordinary Least Squares (OLS)

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

Friday 22 November

11:00
Researching Organisations (1 of 3) Finished 11:00 - 13:00 Judge Business School, W2.01

This course provides an introduction to some of the methodological issues involved in researching organisations. Drawing on examples of studies carried out in a wide range of different types of organisation, the aim will be to explore practical strategies to overcome some of problems that are typically encountered in undertaking such studies.

NOTE: Strike action is taking place between 25 November and 4 December 2019. If the strike goes ahead, this module may be affected. Please see the 'latest news' section on the home page of the SSRMP website for more information.