skip to navigation skip to content
Mon 4 May, Wed 6 May, ... Wed 20 May 2020
14:00 - 17:00

Venue: GSLS Online Live Training

Provided by: Graduate School of Life Sciences


Booking

Bookings cannot be made on this event (Event is in the past).


Other dates:

No more events

[ Show past events ]



Register interest
Register your interest - if you would be interested in additional dates being scheduled.


Booking / availability

Core Statistics
BeginnersPrerequisitesExtra run

Mon 4 May, Wed 6 May, ... Wed 20 May 2020

Description

PLEASE NOTE that this course will be taught live online, with demonstrators available to help you throughout if have any questions. All lecture components will be recorded and uploaded to the course Moodle page so that you will be able to access that information even if technical or time zone restrictions means that you aren't able to join us for the live sessions.

This virtually delivered course is intended to provide a strong foundation in practical statistics and data analysis using the R or Python software environments. The underlying philosophy of the course is to treat statistics as a practical skill rather than as a theoretical subject and as such the course focuses on methods for addressing real-life issues in the biological sciences.

There are three core goals for this course:

  1. Use R or Python confidently for statistics and data analysis
  2. Be able to analyse datasets using standard statistical techniques
  3. Know which tests are and are not appropriate

Both R and Python are free software environments that are suitable for statistical and data analysis.

In this course, we explore classical statistical analysis techniques starting with simple hypothesis testing and building up to linear models and power analyses. The focus of the course is on practical implementation of these techniques and developing robust statistical analysis skills rather than on the underlying statistical theory

After the course you should feel confident to be able to select and implement common statistical techniques using R or Python and moreover know when, and when not, to apply these techniques.

Target audience
  • The course is open to graduate students and postdocs from all departments and affiliated institutions within the GSLS
  • This course is included as part of several DTP programmes as well as other departmental training within the university (potentially under a different name) so participants who have attended statistics training elsewhere should check before applying.
  • Please be aware that this course is only free for University of Cambridge students.
Prerequisites

This course requires users to be familiar with either the R or Python languages. Attending an introductory course (or doing a bit of Googling) is definitely advantageous if you do not have a working knowledge of either language already.

Sessions

Number of sessions: 6

# Date Time Venue Trainer
1 Mon 4 May   14:00 - 17:00 14:00 - 17:00 GSLS Online Live Training Dr Matt Castle
2 Wed 6 May   14:00 - 17:00 14:00 - 17:00 GSLS Online Live Training Dr Matt Castle
3 Mon 11 May   14:00 - 17:00 14:00 - 17:00 GSLS Online Live Training Dr Matt Castle
4 Wed 13 May   14:00 - 17:00 14:00 - 17:00 GSLS Online Live Training Dr Matt Castle
5 Mon 18 May   14:00 - 17:00 14:00 - 17:00 GSLS Online Live Training Dr Matt Castle
6 Wed 20 May   14:00 - 17:00 14:00 - 17:00 GSLS Online Live Training Dr Matt Castle
Objectives

Learning Objectives After this course you should be able to:

  1. Analyse datasets using standard statistical techniques
  2. Know when each test is and is not appropriate
Aims

During this course you will learn about:

  • One and two sample hypothesis tests
  • ANOVA
  • Simple linear Regression
  • ANCOVA
  • Linear Models
  • Model selection techniques
  • Power Analyses
Format

The course is primarily based around computer practicals interspersed with short lectures and presentations used to explain core ideas and principles.

Notes

The course is split over six 3 hour sessions.

Duration

Six three hour sessions

Frequency

Several times per term

Themes

Booking / availability