skip to navigation skip to content

All Department of Chemistry courses

Show:
Show only:

Showing courses 1-25 of 67
Courses per page: 10 | 25 | 50 | 100

Chemistry: CDT Computational Parametrization new Wed 20 Nov 2019   13:00 Not bookable

This course will introduce students to the central question of how to encode molecules and molecular properties in a computational model. Building on the compulsory informatics course (see previous table entry), it will focus on reactivity parameterisation and prediction. The basics of DFT calculations will be introduced, together with how DFT can be used to model reactions (including flaws, assumptions, drawbacks etc). Lecture based format will be complemented by practical sessions in setting up different DFT-based calculations.

The session will cover the use of electronic laboratory notebook which is a computer programme designed to replace laboratory notebooks. ELN will help the users to document research, experiments and procedures performed in a laboratory.

This course will focus on recent progress in the application of kernel-based methods, Random Forests and Deep Neural Networks to modelling in chemistry. The material will build on the content of the core Informatics course and introduce new descriptors, advanced modelling techniques and example applications drawn from the current literature. Lectures will be interactive, with students working through computational exercises during class sessions.

Chemistry: CDT Introduction to Probablistic Modelling new Fri 22 Nov 2019   13:00 Not bookable

An applied introduction to probabilistic modelling, machine learning and artificial intelligence-based approaches for students with little or no background in theory and modelling. The course will be taught through a series of case studies from the current literature in which modelling approaches have been applied to large datasets from chemistry and biochemistry. Data and code will be made available to students and discussed in class. Students will become familiar with python based tools that implement the models though practical sessions and group based assignments.

The course will introduce the general methodology of model development, including techniques for model identification and parameter estimation. The idea of model-based design of experiments will be introduced and linked to parameter estimation. Tools for model development and MBDoE will also be introduced.

Process systems engineering (PSE) is a developed field of engineering, focusing on mathematical methods of optimisation of individual processes and systems of processes used in the manufacture of molecules. PSE tools include methods of identifying reaction kinetics, methods of model development, model-based design of experiments, analysis of system integration, and system optimisation tools. The application of PSE tools in petrochemical industry is well-developed and leads to major benefits in terms of process efficiency, safety and economics. The application of PSE tools in manufacture of more complex molecules and products, such as agrichemicals and pharmaceuticals, is less developed. This is mainly due to the difficulty in generating good models in the processes that are frequently not fully understood and not fully observed (not all species are monitored or identified). This course will cover key methods from PSE toolbox that are relevant for development of more complex synthetic chemistry-based manufacturing processes: methods of kinetics analysis, model-based design of experiments, use of models for process integration and optimisation. The course will be run as a workshop over two days.

1 other event...

Date Availability
Wed 20 May 2020 09:00 [Places]
Chemistry: CP1 - Career Options for PhDs Tue 5 May 2020   11:00 [Places]

PhD students have plenty of options once you graduate. In this interactive session we will look at the pros and cons of different career options. You will have a chance to think about what you want your work to do for you and what you can offer employers, and you will learn ways to find out more about jobs in which you are interested.

Starting to apply for jobs both in and outside academia? Preparing for an interview? Not sure how to target your application, what to include and what to leave out. In this session you can learn more about how selection processes work including how to put together a CV and cover letter and how to prepare for job interviews. The workshop will include interactive exercises, a review of successful application materials, and discussions.

Chemistry: CT10 Vibrational Spectroscopy new Mon 25 Nov 2019   10:00 [Places]

Spectroscopic methods in biochemistry and biophysics are powerful tools to characterise the chemical properties of samples in chemistry and biology, including molecules, macromolecules, living organisms, polymers and materials. Within the wide class of biophysical methods, infrared spectroscopy (IR) is a sensitive analytical label-free tool able to identify the chemical composition and properties of a sample through its molecular vibrations, which produce a characteristic fingerprint spectrum. An infrared spectrum is commonly obtained by passing infrared radiation through a sample and determining what fraction of the incident radiation is absorbed at a particular energy. The energy at which any peak in an absorption spectrum appears corresponds to the frequency of a vibration of a part of a sample molecule. One of the great advantages of infrared spectroscopy is that virtually any sample in virtually any state may be studied, such as liquids, solutions, pastes, powders, films, fibres, gases and surfaces can all be examined. In this introductory course, the basic ideas and definitions associated with infrared spectroscopy will be described. First, the possible configurations of the spectrometers used to measure IR absorption will be discussed. Then, the vibrations of molecules, inorganic and organic chemical compounds, as well as large biomolecules will be introduced, as these are crucial to the interpretation of infrared spectra in every day experimental life.

This session is compulsory for all experimentalists to attend and will provide useful information regarding analytical facilities at this Department including NMR, mass spectrometry and X-ray crystallography. Short descriptions will be given of all available instruments, as well as explain the procedures for preparing/submitting samples for the analysis will also be discussed.

Chemistry: CT2 Fundamentals of Mass Spectrometry Mon 4 Nov 2019   10:00 Finished

Mass spectrometry is one of the main analytical-chemical techniques used to characterise organic compounds and their elemental composition. This overview will discuss some of the most frequently used mass spectrometry techniques and their specific strengths (e.g., quadrupole, time-of-flight and high-resolution MS), as well as ionisation techniques such as electron ionisation (EI), electrospray ionisation (ESI), matrix assisted laser desorption/ionisation (MALDI) and MS techniques to quantify metal concentrations (e.g. inductively coupled plasma MS, ICP-MS) and isotope ratios.

This training will consist of two sessions, introducing you to use of both Water's MS software and MassLynx and Bruker and Thermo's MS software: MALDI and Orbitrap.

Chemistry: CT4 Solution Phase NMR Spectroscopy Fri 8 Nov 2019   14:00 Finished

Nuclear Magnetic Resonance (NMR) spectroscopy represents one of the most informative and widely used techniques for characterisation of compounds in the solution and solid state. Most researchers barely tap into the potential of the experiments that are available on the instruments in the Department, so in this short course we will explore the basic concepts that will allow you to make the most of these powerful techniques for routine analysis, as well as introducing more specialised experiments.

Chemistry: CT5 Solid State NMR Spectroscopy Mon 11 Nov 2019   14:00 Finished

This course will provide an idea of what kind of scientific problems can be solved by solid state NMR. It will cover how NMR can be used to study molecular structure, nanostructure and dynamics in the solid state, including heterogeneous solids, such as polymers, MOFs, energy-storage and biological materials This course will build on a basic working knowledge of solution-state NMR for 1H and 13C, i.e. undergraduate level NMR. In order to highlight the utility of this technique, some materials based research using solid state NMR will also be covered

The session will also give an insight into some of the more advanced features of the software, and how to optimise your workflow.

Chemistry: CT7 X-Ray Crystallography Tue 12 Nov 2019   14:00 [Places]

These lectures will introduce the basics of crystallography and diffraction, assuming no prior knowledge. The aim is to provide an overview that will inspire and serve as a basis for researchers to use the Department’s single-crystal and/or powder X-ray diffraction facilities or to appreciate more effectively results obtained through the Department’s crystallographic services. The final lecture will be devoted to searching and visualising crystallographic data using the Cambridge Structural Database system.

Chemistry: CT8 Electron Microscopy Thu 5 Dec 2019   14:00 [Places]

This lecture will provide an overview of the Department’s electron microscopy facility. It will cover the theory of Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), including cryo-TEM and tomography, as well as analytical techniques Energy-dispersive X-ray spectroscopy (EDX) and Electron Energy Loss Spectroscopy (EELS). Examples of how these techniques can be used to characterise a range of samples including polymers, proteins and inorganic materials will be shown.

Chemistry: CT9 Atomic Force Microscopy Mon 18 Nov 2019   10:00 [Places]

Since introduction in 1986 by Binnig, Quate and Gerber, atomic force microscopy (AFM) has emerged as one of the most powerful scanning probe microscopy technique. The possibility to acquire three-dimensional morphology maps of specimens on a surface in both air and in their native liquid environment with sub-nanometre resolution makes it a very versatile single molecule technique. A conventional AFM topography map provides valuable information on the morphology and structure of heterogeneous biological samples, while single molecule force spectroscopy can interrogate the biophysical and nanomechanical properties of the sample at the nanoscale. Furthermore, the combination of AFM with spectroscopic modes enable to enquire the optical properties of the sample with nanoscale resolution. In these introductory lectures, the general capabilities of AFM with respect to other scanning probe and electron microscopy techniques will be discussed. The general principles governing the functioning of AFM in contact and tapping mode will be given, as well as the principles enabling the study of nanomechanical properties of samples by force spectroscopy and nanomechanical imaging. Other modes such as scattering SNOM, AFM-IR and Raman will be generally discussed. The course will provide the necessary background to acquire a morphology map by AFM. The last session will consist of a hand-on session introducing the students to the use and functioning of an AFM instrument.

Chemistry: DD10 Process Chemistry Workshop new Tue 3 Mar 2020   10:00 [Places]

TBC

Chemistry: DD1 The Drug Discovery Process Wed 15 Jan 2020   14:00 [Places]

Drug discovery is a complex multidisciplinary process with chemistry as the core discipline. A small molecule New Chemical Entity (NCE) (80% of drugs marketed) has had its genesis in the mind of a chemist. A successful drug is not only biologically active (the easy bit), but is also therapeutically effective in the clinic – it has the correct pharmacokinetics, lack of toxicity, is stable and can be synthesised in bulk, selective and can be patented. Increasingly, it must act at a genetically defined sub-population of patients. Medicinal chemists therefore work at the centre of a web of disciplines – biology, pharmacology, molecular biology, toxicology, materials science, intellectual property and medicine. This fascinating interplay of disciplines is the intellectual space within which a chemist has to make the key compound that will become an effective medicine. It happens rarely, despite enormous investment in time, money and effort. What factors make a program successful? I would like to briefly outline the process, but importantly to offer some key with examples of success

Chemistry: DD2 The Drug Discovery Process Fri 17 Jan 2020   14:00 [Places]

Drug discovery is a complex multidisciplinary process with chemistry as the core discipline. A small molecule New Chemical Entity (NCE) (80% of drugs marketed) has had its genesis in the mind of a chemist. A successful drug is not only biologically active (the easy bit), but is also therapeutically effective in the clinic – it has the correct pharmacokinetics, lack of toxicity, is stable and can be synthesised in bulk, selective and can be patented. Increasingly, it must act at a genetically defined sub-population of patients. Medicinal chemists therefore work at the centre of a web of disciplines – biology, pharmacology, molecular biology, toxicology, materials science, intellectual property and medicine. This fascinating interplay of disciplines is the intellectual space within which a chemist has to make the key compound that will become an effective medicine. It happens rarely, despite enormous investment in time, money and effort. What factors make a program successful? I would like to briefly outline the process, but importantly to offer some key with examples of success

Chemistry: DD3 Modern Tactics to Optimise Potency Fri 24 Jan 2020   14:00 [Places]

When you have 1000s of possible compounds you could make from any one start point what do you make first? This lecture will cover some general basic principles on designing more potent molecules, as well as some practical tips on how to run an optimization program and how to focus synthetic efforts. Binding modalities (reversible, covalent) will be briefly covered, as well as some newer non-traditional modalities. This lecture will also serve as an introduction to the medicinal chemistry game.

Chemistry: DD4 Pharmacokinetics Wed 29 Jan 2020   14:00 [Places]

Predicting and controlling how a chemical molecule will be processed by the body is vital to developing a successful drug. This lecture will discuss the path a molecule takes from initial dose through to elimination, describe the ADME (Absorption, Distribution, Metabolism and Excretion) processes that take place and how these are related to compound structure and physicochemical properties. In addition to standard small molecule PK some other new modalities will be also be introduced to illustrate how methods such as PEGylation and lipoparticle encapsulation can be employed to modulate compound pharmacokinetic properties.

Chemistry: DD5 Medicinal Chemistry Game Workshop Fri 31 Jan 2020   14:00 [Places]

A real drug discovery example will be used. After a brief introduction to the task and the chemical startpoint, we will split into teams and iteratively try to design improved analogues. Molecules will be marked “in real time” during the session to recreate the design-make-test-analysis cycle, then teams can compare their optimized molecules, and we can compare them to what happened in real life.

Chemistry: DD6 Toxicity and Drug Safety Wed 5 Feb 2020   14:00 [Places]

Drug safety remains the primary cause of compound attrition when developing new medicines and consequently the ability to understand and predict toxicity is regarded as high priority within the pharmaceutical sector. This lecture will describe some common safety liabilities and ongoing work to build a greater understanding of the relationships between chemical structure and toxicity risk that are being harnessed to guide the design of safer compounds

[Back to top]