skip to navigation skip to content

Department of Chemistry

Department of Chemistry course timetable

Show:

Mon 7 Oct – Fri 8 Nov

Now Today



October 2019

Mon 7
Chemistry: SF1 Departmental Safety Induction Finished 11:00 - 12:30 Wolfson Lecture Theatre

The Departmental Advanced Safety Training covers basic induction training in how to work safely, including emergency arrangements for fire and evacuation, first aid and incidents including flood and gas leak. By attending, you are made aware of the Department’s Health and Safety Policy and your responsibilities under health and safety law. You will be introduced to the process required to prepare a risk assessment with standard operating procedure (SOP) or method statement, how to select the correct type of protective equipment (PPE) and why it needs to be worn, and reminded of the importance of good house keeping for reducing the likelihood of there being an incident. The hazards associated with display screen equipment (DSE) and manual handling are identified and the need to control them by a suitable and sufficient assessment of the risk is explained. Electrical safety and the requirement for annual Portable Appliance Testing (PAT) is made clear.

Chemistry: SF2 University Chemical Safety Training Finished 13:30 - 17:00 Wolfson Lecture Theatre

Part of Induction Week

Tue 8
Chemistry: SF4 Pressurised Gas & Cryogens Finished 09:00 - 12:30 Wolfson Lecture Theatre

This course will cover safe storage and use of cryogens, safe use and stores of compressed gas, and aspects of oxygen depletion with respect to the above.

Chemistry: SF3 Advanced Safety Training for Experimentalists Finished 13:30 - 15:00 Wolfson Lecture Theatre

Advanced induction training for experimentalists introduces some of the department’s special chemical hazards including explosives, hydrogen fluoride and cyanide, and restricted chemicals, and illustrates the consequences of incorrect waste disposal. Experimentalists are made aware of the biological hazards in the department and how these are controlled with a suitable risk assessment, safety cabinets and the need for the appropriate inactivation method to be applied. Attendees are alerted to the hazards and damage caused by non-ionising radiation, glassware and sharps, oil baths and lifting equipment. The induction concludes by directing the experimentalist to compulsory University-provided specialist training courses, the requirement for fire awareness training and sources of Health and Safety information.

Wed 9
Chemistry: SF5 Introduction to Demonstrating Finished 11:00 - 12:30 Part 1A Lab

We view demonstrating to undergraduate students as a key part of postgraduate education.

Demonstrating is compulsory for 1st and 2d year postgraduate students with the right background (we do not wish to place anybody in the undergraduate laboratories for whom this would be inappropriate).

Demonstrating is also open to all MPhil, 3rd/4th year graduate students and postdoctoral researchers.

Chemistry: IS1 Library Orientation Finished 14:00 - 14:30 Library

This is a compulsory session which introduces new graduate students to the Department of Chemistry Library and its place within the wider Cambridge University Library system. It provides general information on what is available, where it is, and how to get it. Print and online resources are included.

You must choose one session out of the 9 sessions available.

Thu 10
Chemistry: FS29 Fortran 90/95 for Physical Scientists new (1 of 4) Finished 10:00 - 11:00 G30

You will be introduced to Fortran 90/95 and provided with materials which cover the basics of Fortran 90/95 with an emphasis on applications in the physical sciences. The key concepts of loops, functions, subroutines, modules, and other standard Fortran syntax will be introduced sequentially.

Mon 14
Chemistry: Philosophy for Chemists (1 of 3) Finished 12:00 - 13:00 Unilever Lecture Theatre

Science is a striking, successful and powerful feature of contemporary human cultures: it has transformed lives, enabled great technological feats and often revealed the world to be a much stranger place than appearances suggest. But what is science, really, and how and why has it been so successful? This 3 week course aims to introduce graduate students to some main themes in the philosophy of science generally, and the philosophy of chemistry in particular.

Lecture 1. What Is Science?

What makes science scientific? Is there something distinctive about scientific investigation which distinguishes it from other things humans do? Does science give us infallible knowledge? Or at least the kind of knowledge that always gets better? These questions will be discussed in relation to the views of some well-known philosophers of science including Karl Popper and Thomas Kuhn.

Lecture 2. Measurement

Measurement is the foundation of any quantitative empirical science. We make all sorts of measurements routinely in the lab, but there are actually deep difficulties in knowing if our instruments and procedures correctly measure what we intend to measure. The epistemological issues involved here will be discussed through various scientific examples, including temperature and pH.

Lecture 3. Reductionism

Does all science ultimately boil down to fundamental physics? This is a pertinent issue to all areas of science, but an urgent one especially for chemistry. Considering the success of quantum chemistry one might imagine that chemistry is just applied physics, but the matter is not so simple. Looking at the longer history of the attempts to reduce chemistry to physics will also be instructive.

Tue 15

This session introduces new undergraduate Chemistry students to the Department of Chemistry Library and its place within the wider Cambridge University Library system. It provides general information on what is available, where it is, and how to get it. Print and online resources are included.

Wed 16

This session is compulsory for all experimentalists to attend and will provide useful information regarding analytical facilities at this Department including NMR, mass spectrometry and X-ray crystallography. Short descriptions will be given of all available instruments, as well as explain the procedures for preparing/submitting samples for the analysis will also be discussed.

This session introduces new undergraduate Chemistry students to the Department of Chemistry Library and its place within the wider Cambridge University Library system. It provides general information on what is available, where it is, and how to get it. Print and online resources are included.

The course will introduce the general methodology of model development, including techniques for model identification and parameter estimation. The idea of model-based design of experiments will be introduced and linked to parameter estimation. Tools for model development and MBDoE will also be introduced.

Thu 17
Chemistry: FS29 Fortran 90/95 for Physical Scientists new (2 of 4) Finished 10:00 - 11:00 G30

You will be introduced to Fortran 90/95 and provided with materials which cover the basics of Fortran 90/95 with an emphasis on applications in the physical sciences. The key concepts of loops, functions, subroutines, modules, and other standard Fortran syntax will be introduced sequentially.

This session introduces new undergraduate Chemistry students to the Department of Chemistry Library and its place within the wider Cambridge University Library system. It provides general information on what is available, where it is, and how to get it. Print and online resources are included.

The course will introduce the general methodology of model development, including techniques for model identification and parameter estimation. The idea of model-based design of experiments will be introduced and linked to parameter estimation. Tools for model development and MBDoE will also be introduced.

Mon 21
Chemistry: Philosophy for Chemists (2 of 3) Finished 12:00 - 13:00 Unilever Lecture Theatre

Science is a striking, successful and powerful feature of contemporary human cultures: it has transformed lives, enabled great technological feats and often revealed the world to be a much stranger place than appearances suggest. But what is science, really, and how and why has it been so successful? This 3 week course aims to introduce graduate students to some main themes in the philosophy of science generally, and the philosophy of chemistry in particular.

Lecture 1. What Is Science?

What makes science scientific? Is there something distinctive about scientific investigation which distinguishes it from other things humans do? Does science give us infallible knowledge? Or at least the kind of knowledge that always gets better? These questions will be discussed in relation to the views of some well-known philosophers of science including Karl Popper and Thomas Kuhn.

Lecture 2. Measurement

Measurement is the foundation of any quantitative empirical science. We make all sorts of measurements routinely in the lab, but there are actually deep difficulties in knowing if our instruments and procedures correctly measure what we intend to measure. The epistemological issues involved here will be discussed through various scientific examples, including temperature and pH.

Lecture 3. Reductionism

Does all science ultimately boil down to fundamental physics? This is a pertinent issue to all areas of science, but an urgent one especially for chemistry. Considering the success of quantum chemistry one might imagine that chemistry is just applied physics, but the matter is not so simple. Looking at the longer history of the attempts to reduce chemistry to physics will also be instructive.

Tue 22

This session introduces new undergraduate Chemistry students to the Department of Chemistry Library and its place within the wider Cambridge University Library system. It provides general information on what is available, where it is, and how to get it. Print and online resources are included.

Wed 23

This session introduces new undergraduate Chemistry students to the Department of Chemistry Library and its place within the wider Cambridge University Library system. It provides general information on what is available, where it is, and how to get it. Print and online resources are included.

Thu 24
Chemistry: FS29 Fortran 90/95 for Physical Scientists new (3 of 4) Finished 10:00 - 11:00 G30

You will be introduced to Fortran 90/95 and provided with materials which cover the basics of Fortran 90/95 with an emphasis on applications in the physical sciences. The key concepts of loops, functions, subroutines, modules, and other standard Fortran syntax will be introduced sequentially.

Mon 28
Chemistry: Philosophy for Chemists (3 of 3) Finished 12:00 - 13:00 Unilever Lecture Theatre

Science is a striking, successful and powerful feature of contemporary human cultures: it has transformed lives, enabled great technological feats and often revealed the world to be a much stranger place than appearances suggest. But what is science, really, and how and why has it been so successful? This 3 week course aims to introduce graduate students to some main themes in the philosophy of science generally, and the philosophy of chemistry in particular.

Lecture 1. What Is Science?

What makes science scientific? Is there something distinctive about scientific investigation which distinguishes it from other things humans do? Does science give us infallible knowledge? Or at least the kind of knowledge that always gets better? These questions will be discussed in relation to the views of some well-known philosophers of science including Karl Popper and Thomas Kuhn.

Lecture 2. Measurement

Measurement is the foundation of any quantitative empirical science. We make all sorts of measurements routinely in the lab, but there are actually deep difficulties in knowing if our instruments and procedures correctly measure what we intend to measure. The epistemological issues involved here will be discussed through various scientific examples, including temperature and pH.

Lecture 3. Reductionism

Does all science ultimately boil down to fundamental physics? This is a pertinent issue to all areas of science, but an urgent one especially for chemistry. Considering the success of quantum chemistry one might imagine that chemistry is just applied physics, but the matter is not so simple. Looking at the longer history of the attempts to reduce chemistry to physics will also be instructive.

Tue 29
run new Finished 09:30 - 10:00 Scott Polar LT

« Description not available »

Thu 31
Chemistry: FS29 Fortran 90/95 for Physical Scientists new (4 of 4) Finished 10:00 - 11:00 G30

You will be introduced to Fortran 90/95 and provided with materials which cover the basics of Fortran 90/95 with an emphasis on applications in the physical sciences. The key concepts of loops, functions, subroutines, modules, and other standard Fortran syntax will be introduced sequentially.

November 2019

Mon 4
Chemistry: CT2 Fundamentals of Mass Spectrometry Finished 10:00 - 12:00 Department of Chemistry, Unilever Lecture Theatre

Mass spectrometry is one of the main analytical-chemical techniques used to characterise organic compounds and their elemental composition. This overview will discuss some of the most frequently used mass spectrometry techniques and their specific strengths (e.g., quadrupole, time-of-flight and high-resolution MS), as well as ionisation techniques such as electron ionisation (EI), electrospray ionisation (ESI), matrix assisted laser desorption/ionisation (MALDI) and MS techniques to quantify metal concentrations (e.g. inductively coupled plasma MS, ICP-MS) and isotope ratios.

Thu 7
Chemistry: CT3 An Introduction to Mass Spec Processing Finished 14:00 - 16:00 Unilever Lecture Theatre

This training will consist of two sessions, introducing you to use of both Water's MS software and MassLynx and Bruker and Thermo's MS software: MALDI and Orbitrap.

Fri 8
Chemistry: CT4 Solution Phase NMR Spectroscopy Finished 14:00 - 17:00 Department of Chemistry, Unilever Lecture Theatre

Nuclear Magnetic Resonance (NMR) spectroscopy represents one of the most informative and widely used techniques for characterisation of compounds in the solution and solid state. Most researchers barely tap into the potential of the experiments that are available on the instruments in the Department, so in this short course we will explore the basic concepts that will allow you to make the most of these powerful techniques for routine analysis, as well as introducing more specialised experiments.