skip to navigation skip to content

All Bioinformatics courses

Show:
Show only:

Showing courses 11-20 of 118
Courses per page: 10 | 25 | 50 | 100

An Introduction to MATLAB for biologists Mon 17 Jun 2019   09:30 Finished

This course aims to give you an introduction to the basics of Matlab. During the two day course we will use a practical based approach to give you the confidence to start using Matlab in your own work. In particular we will show you how to write your own scripts and functions and how to use pre-written functions. We will also explore the many ways in which help is available to Matlab users. In addition we will cover basic computer programming in Matlab to enable you to write more efficient scripts.

The training room is located on the first floor and there is currently no wheelchair or level access available to this level.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to Book or register Interest by linking here.

The goal of metabolomics is to identify and quantify the complete biochemical composition of a biological sample. With the increase in genomic, transcriptomic and proteomic information there is a growing need to understand the metabolic phenotype that these genes and proteins ultimately control.

The aim of this course is to provide an overview of metabolomics and its applications in life sciences, clinical and environmental settings. Over 2 days we will introduce different techniques used to extract metabolites and analyse samples to collect metabolomic data (such as HPLC or GC-based MS and NMR), present how to analyse such data, how to identify metabolites using online databases and how to map the metabolomic data to metabolic pathways.

The course content will predominantly be based on analysing samples from model plant species such as Arabidopsis thaliana but the procedures are transferable to all other organisms, including clinical and environmental settings.

The training room is located on the first floor and there is currently no wheelchair or level access available to this level.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

The aim of this course is to introduce participants to the basics of statistical analysis and the open source statistical software R, a free software environment for statistical computing and graphics.

Participants will actively use R throughout the course, during which they will be introduced to principles of statistical thinking and interpretation by example, exercises and discussion about a range of problems. The examples will be used to present a variety of statistical concepts and techniques, with no focus on any specific discipline.

Important information: We have 12 configured laptops for use at the workshop. After these laptops have been allocated, participants will either need to share, or bring their own. These laptops will be allocated to the first individuals to express an interest in using them. When booking, please indicate under "Special requirements" if you wish to use one of the 12 laptops or bring your own. Participants bringing their own laptop will be given instructions on what software to install.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register interest by linking here.

This course is aimed at those new to programming and provides an introduction to programming using Perl.

During this course you will learn the basics of the Perl programming language, including how to store data in Perl’s standard data structures such as arrays and hashes, and how to process data using loops, functions, and many of Perl’s built in operators. You will learn how to write and run your own Perl scripts and how to pass options and files to them. The course also covers sorting, regular expressions, references and multi-dimensional data structures.

The course will be taught using the online Learning Perl materials created by Sofia Robb of the University of California Riverside.

The course website providing links to the course materials is here.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book by linking here.

This course provides a practical introduction to the writing of Python programs for the complete novice. Participants are lead through the core aspects of Python illustrated by a series of example programs. Upon completion of the course, attentive participants will be able to write simple Python programs and customize more complex code to fit their needs.

Course materials are available here.

Please note that the content of this course has recently been updated. This course now mostly focuses on core concepts including Python syntax, data structures and reading/writing files. Concepts and strategies for working more effectively with Python are now the focus of a new 2-days course, Data Science in Python.

The training room is located on the first floor and there is currently no wheelchair or level access available to this level.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

An Introduction to Solving Biological Problems with R Tue 11 Jun 2019   09:30 Finished

Please note that this course has been discontinued and has been replaced by the Introduction to R for biologists.

R is a highly-regarded, free, software environment for statistical analysis, with many useful features that promote and facilitate reproducible research.

In this course, we give an introduction to the R environment and explain how it can be used to import, manipulate and analyse tabular data. After the course you should feel confident to start exploring your own dataset using the materials and references provided.

The course website providing links to the course materials is here.

Please note that although we will demonstrate how to perform statistical analysis in R, we will not cover the theory of statistical analysis in this course. Those seeking an in-depth explanation of how to perform and interpret statistical tests are advised to see the list of Related courses. Moreover, those with some programming experience in other languages (e.g. Python, Perl) might wish to attend the follow-on Data Analysis and Visualisation in R course.

This event is supported by the BBSRC Strategic Training Awards for Research Skills (STARS) grant (BB/P022766/1).

The training room is located on the first floor and there is currently no wheelchair or level access available to this level.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

THIS EVENT IS NOW FULLY BOOKED!

This Autumn School aims to familiarise biomedical students and researchers with principles of Data Science. Focusing on utilising machine learning algorithms to handle biomedical data, it will cover: effects of experimental design, data readiness, pipeline implementations, machine learning in Python, and related statistics, as well as Gaussian Process models.

Providing practical experience in the implementation of machine learning methods relevant to biomedical applications, including Gaussian processes, we will illustrate best practices that should be adopted in order to enable reproducibility in any data science application.

This event is sponsored by Cambridge Big Data.

The training room is located on the first floor and there is currently no wheelchair or level access available to this level.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Bacterial Genome Assembly and Annotation in Galaxy new Thu 8 Jun 2017   09:30 Finished

The workshop will cover the basics of de novo genome assembly using a small genome example. This includes project planning steps, selecting fragment sizes, initial assembly of reads into fully covered contigs, and then assembling those contigs into larger scaffolds that may include gaps. The end result will be a set of contigs and scaffolds with sufficient average length to perform further analysis on, including genome annotation (link to that nomination). This workshop will use tools and methods targeted at small genomes. The basics of assembly and scaffolding presented here will be useful for building larger genomes, but the specific tools and much of the project planning will be different.

This workshop will also introduce genome annotation in the context of small genomes. We’ll begin with genome annotation concepts, and then introduce resources and tools for automatically annotating small genomes. The workshop will finish with a review of options for further automatic and manual tuning of the annotation, and for maintaining it as new assemblies or information becomes available.

This session will include an introduction to the Galaxy platform.

This event is co-organized with EMBL-ABR and the Genomics Virtual Lab. Course materials can be found here.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book by linking here.

Basic statistics and data handling Wed 28 Feb 2018   09:30 Finished

This three day course is intended to open doors to applying statistics - whether directly increasing skills and personally undertaking analyses, or by expanding knowledge towards identifying collaborators. The end goal is to drive confident engagement with data analysis and further training - increasing the quality and reliability of interpretation, and putting that interpretation and subsequent presentation into the hands of the researcher. Each day of the course will deliver a mixture of lectures, workshops and hands-on practicals – and will focus on the following specific elements.

Day 1 focuses on basic approaches and the computer skills required to do downstream analysis. Covering: Basic skills for data manipulation in R. How to prepare your data effectively. Principles of experimental design and how this influences analysis.

On day 2, participants will explore the core concepts of statistics – so that they can begin to see how they can be applied to their own work, and to also help with better critical evaluation of the work of others. Covering: Basic statistics concepts and practice: power, variability, false discovery, t-test, effect size, simulations to understand what a p-value means.

On day 3 we will continue to explore core concepts of statistics, focusing on linear regression and multiple testing correction.

Course materials are available here.

This event is supported by the BBSRC Strategic Training Awards for Research Skills (STARS) grant (BB/P022766/1).

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book by linking here.

Big Data and Cloud Computing new Fri 1 Jun 2018   09:30 Finished

Recent advances in genomics, proteomics, imaging and other technologies, have resulted in data being generated at a faster rate than they can be meaningfully analysed. In this course we will show you how cloud computing can be used to meet the challenges of storage, management and analysis of big data. The first half of the course will introduce cloud infrastructure technologies. The second half will cover tools for collaborative working, resource management, and creation of workflows. The instructors will demonstrate how they are using cloud computing in their own research.

N.B. If you sign up for this course, you will be automatically registered for an AWS educate account, which will provide you with sufficient AWS credits to complete the course exercises. If you decide to continue using cloud computing after the course, you will need to either purchase more credits or apply for a grant from programs like: AWS Cloud Credits for Research, Microsoft Azure for Research or Google Cloud Platform Education Grants.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book by linking here.

[Back to top]